บทที่2 โครงงาน เรื่อง ความน่าจะเป็นในร้านเสี่ยงโชค

โครงงานคณิตศาสตร์ เรื่อง ความน่าจะเป็นในร้านเสี่ยงโชค
บทที่2
ความน่าจะเป็นของเหตุการณ์
ในชีวิตประจำวันเราอยู่กับเหตุการณ์ต่าง ๆ และมีคำถามอยู่ในใจตลอดเวลา เช่น
- พรุ่งนี้ฝนจะตกหรือไม่
- บางทีเราต้องไปทำงานวันนี้
- นายกอาจลาออกและยุปสภาเร็ว ๆ นี้
- ทีมฟุตบอลทีมใดจะได้เป็นแชมป์โลก
 - ใครชนะเลือกตั้งในสมัยหน้า
   
คำว่า "ความน่าจะเป็น" หรือ "probability" เป็นวิธีการวัดความไม่แน่นอนในรูปแบบคณิตศาสตร์ เช่น เมื่อโยนเหรียญ ความน่าจะเป็นของเหรียญที่จะออกหัวหรือก้อยเท่ากับ 0.5 
ดังนั้นเหตุการณ์ต่าง ๆ ที่เกิดขึ้นในอาณาคตเป็นสิ่งที่ยากจะคาดเดาได้ถูกต้องร้อยเปอร์เซนต์ นักอุตุนิยมวิทยาจึงใช้หลักการของความน่าจะเป็นเข้ามาทำนาย เช่น ความน่าจะเป็นของการเกิดฝนตกใน กรุงเทพมหานคร ในวันพรุ่งนี้มีค่าเท่ากับ 0.7 
ความน่าจะเป็น เป็นค่าที่อาจมีความหมายที่หลายคนเข้าใจได้ไม่ยาก ความน่าจะเป็น เป็นศาสตร์ที่มีความละเอียดอ่อนที่จะนำไปประยุกต์ใช้ โดยเฉพาะเหตุการณ์ในชีวิตประจำวันต่าง ๆ ความน่าจะเป็นมีการกำหนดค่าเป็นเศษส่วนหรือเป็นเปอร์เซนต์หรือให้มีค่าระหว่าง 0 ถึง 1 เช่น ถ้านำลูกเต๋า ทอยลงบนพื้น โอกาสที่จะปรากฎหน้า 1 มีค่าเท่ากับ 1/6 หรือ 16.6 เปอร์เซนต์ ถ้าโยนเหรียญหนึ่งเหรียญ และให้ตกบนพื้น (โยนแบบยุติธรรม) โอกาสที่จะปรากฏหัวเท่ากับ 1/2 หรือ 0.5 
 
ในทางคณิตศาสตร์ เราหา "ค่าของความน่าจะเป็นของเหตุการณ์ซึ่ง ไม่ทราบแน่ว่าจะเกิดหรือไม่" ได้โดยพิจารณา "น้ำหนัก" ที่เหตุการณ์นั้นๆ จะเกิด ถ้ากำหนดให้น้ำหนักของเหตุการณ์ที่เกิดขึ้นไม่ได้มีค่าเป็น 0 น้ำหนัก ของเหตุการณ์ที่เกิดขึ้นแน่มีค่าเป็น 1 
และน้ำหนักของเหตุการณ์ใด ๆ ที่อาจ เกิดขึ้นมีค่าเป็นจำนวนเลขที่อยู่ระหว่าง 0 กับ 1 เราจะมีตัวเลขมากมายนับ ไม่ถ้วน แสดงค่าของน้ำหนัก หรือโอกาสที่เหตุการณ์ต่าง ๆ จะเกิดขึ้นได้ และเรียกค่าของน้ำหนักนี้ว่า "ค่าของความน่าจะเป็น" 
 
  
 
พิจารณาการโยนเหรียญบาทหนึ่งเหรียญ ถ้าเหรียญนั้นไม่ได้มีการถ่วง ให้หน้าใดง่ายง่ายกว่าหน้าอื่นก็เชื่อว่า "น้ำหนัก" ของการที่เหรียญจะ หงายหน้าใดหน้าหนึ่งย่อมเท่ากัน  
ผลที่เป็นไปได้ทั้งหมดมี 2 อย่าง คือเหรียญหงายหัวหรือเหรียญ หงายก้อยซึ่งอาจเกิดอย่างใดอย่างหนึ่งได้เท่า ๆ กัน 
โอกาสที่เหรียญจะหงายหัว=โอกาสที่เหรียญจะหงายก้อย 
  โอกาสที่เหรียญจะหงายหัว = 1/2 
โอกาสที่เหรียญจะหงายก้อย = 1/2 
เรากล่าวว่า ความน่าจะเป็นที่เหรียญหงายหัวมีค่า 1/2 
และความน่าจะเป็นที่เหรียญหงายก้อยมีค่า 1/2 
ในการทอดลูกเต๋าลูกหนึ่ง เมื่อลูกเต๋านั้น ๆ มีหน้าใหญ่เท่า ๆกัน และไม่มีการถ่วงให้หน้าใดหงายง่ายกว่าหน้าอื่น ก็เชื่อได้ว่า "น้ำหนัก" ของการที่ลูกเต๋าจะหงายหน้าใดหน้าหนึ่งย่อมเท่ากัน 
ผลที่ลูกเต๋าจะขึ้นหน้าต่าง ๆ ทั้งหมดมี 6 อย่าง คือ อาจขึ้นหน้า หนึ่ง สอง สาม สี่ ห้า หรือหก ด้วยความน่าจะเป็นเท่า ๆ กัน คือ 1/6  
พิจารณาการโยนเหรียญบาทหนึ่งเหรียญ และเหรียญห้าบาทหนึ่งเหรียญ พร้อม ๆ กัน เหรียญย่อมหงายได้ 4 อย่าง 
ความน่าจะเป็นที่เหรียญใดจะหงายหัวหรือก้อยมีเท่า ๆ กัน คือ 1/2 สำหรับ แต่ละเหรียญ เราใช้ทฤษฎีของความน่าจะเป็นคำนวณค่าของความน่าจะเป็น ได้ดังนี้ 
  ความน่าจะเป็นที่เหรียญทั้งสองจะหงายหัว = 1/4 
ความน่าจะเป็นที่เหรียญทั้งสองจะหงายก้อย = 1/4 
ความน่าจะเป็นที่เหรียญหนึ่งหงายหัวกับอีก 
เหรียญหนึ่งหงายก้อย = 1/2 
ตามความจริงแล้วการเกิดอย่างรูป ก หรือรูป ง อย่างใดอย่าง หนึ่ง ยากกว่าการเกิดตามรูป ข หรือรูป ค ฉะนั้นค่าน้ำหนักของการเกิด ในรูป ก จึงน้อยกว่าค่าน้ำหนักของการเกิดในรูป ข รวมกับค่าน้ำหนักของ การเกิดในรูป ค เช่นเดียวกัน ค่าน้ำหนักของการเกิดในรูป ง ก็น้อยกว่าค่า น้ำหนักของการเกิดในรูป ข รวมกับค่าน้ำหนักของการเกิดในรูป ค 
นอกจากเรื่องโยนลูกเต๋า โยนเหรียญ จับสลาก แจกไพ่แล้ว ยัง มีเรื่องอื่น ๆ อีกมาก ที่มีผลการเกิดซึ่งบอกล่วงหน้าไม่ได้ว่าจะให้ผลอย่าง ไร ทางคณิตศาสตร์จึงต้องใช้สัญลักษณ์มาช่วยจำลองเหตุการณ์ต่าง ๆ ที่อาจ เกิดขึ้นเฉพาะเรื่อง  
และอาศัยกฎเกณฑ์ของคณิตศาสตร์ในแขนงอื่น ๆ ทำให้ เกิดทฤษฎีต่าง ๆ ที่สามารถนำไปหาค่าความน่าจะเป็นของเรื่องที่เกี่ยวข้อง กับความไม่แน่นอนทั้งหลายได้ และสามารถใช้ค่าเหล่านี้คำนวณหาค่าอื่น ๆ ที่จะเป็นประโยชน์ในการนำไปใช้ประกอบการตัดสินใจ 
  เช่น ใช้ค่าของความน่าจะเป็นที่จะมีลูกค้าเข้ามาซื้อของในร้าน เพื่อหาว่าโดยเฉลี่ยจะ มีลูกค้าเข้ามาซื้อของกี่คน 
นักคณิตศาสตร์ชาวฝรั่งเศส เป็นผู้ให้กำเนิดเรื่องของความน่าจะเป็น เมื่อประมาณ 300 ปีมาแล้ว 
แต่เพิ่งจะได้มีการศึกษาโดยละเอียดและนำไปใช้เมื่อประมาณ 40 ปีมานี้เอง ปัจจุบัน เรื่องราวของความน่าจะเป็น มีความสำคัญอย่างมาก การค้นคว้า การวิจัย และการปฏิบัติงานใด ๆ ที่ เกี่ยวข้องกับการคาดคะเน จะต้องอาศัยเรื่องของความน่าจะเป็นทั้งสิ้น 
เช่น การเกษตร การแพทย์ เศรษฐศาสตร์ วิทยาศาสตร์และเทคโน โลยีทุกสาขา ความน่าจะเป็นบางเรื่องใช้คณิตศาสตร์ชั้นสูงหลายวิชามาเกี่ยว โยงกัน และยังมีเรื่องต้องศึกษาค้นคว้าอีกมาก  
 
 
 
ความน่าจะเป็น (Probability)
 
ในการพิจารณาว่าเหตุการณ์ที่เราสนใจมีโอกาสเกิดขึ้นมากน้อยเพียงใดนั้น สามารถทำได้ 2 วิธี ได้แก่
1. ทำการทดลองสุ่มนั้นซ้ำๆ กัน เป็นจำนวนอนันต์ (Infinity)
ซึ่งจะสมมติให้   N แทน จำนวนครั้งของการทดลองสุ่ม
                   n แทน จำนวนครั้งของการเกิดเหตุการณ์ E ที่สนใจ
          และ P(E) แทน ความน่าจะเป็นของการเกิดเหตุการณ์ E ที่สนใจ
          พบว่า อัตราส่วน n/N จะบอกให้ทราบว่าเหตุการณ์ E ที่สนใจ มีดอกาสเกิดขึ้นมากน้อยเพียงใด
          ดังนั้น P(E)= limit ของ n/N เมื่อ N เข้าสู่ infinity
ซึ่งเราจะพบว่า จำนวนครั้งที่ทำการทดลองสุ่มยิ่งมากเท่าใด ก็จะได้ความน่าจะเป็นที่น่าเชื่อถือมากยิ่งขึ้นเท่านั้น
2. ใช้วิธีการหาความน่าจะเป็นโดยการคำนวณจากแซมเปิลสเปซและเหตุการณ์ที่สนใจของการทดลองสุ่มนั้น โดยหาอัตราส่วนระหว่างจำนวนสมาชิกของเหตุการณี่สนใจกับจำนวนสมาชิกของแซม เปิลสเปซ โดยแซมเปิลสเปซที่ใช้ในการคำนวณจะต้องเป็นเซตจำกัดและประกอบด้วยสมาชิกที่มี โอกาสเกิดขึ้นเท่าๆ กัน
ความน่าจะเป็นของเหตุการณ์
ข้อกำหนด      n(S) แทน จำนวนสมาชิกของแซมเปิลสเปซ S ซึ่งประกอบด้วยสมาชิกที่มีโอกาสเกิดขึ้นได้เท่า ๆ กัน
n(E) แทน จำนวนสมาชิกของเหตุการณ์ E ซึ่งเป็นสับเซตของ S
และ     P(E) แทน ความน่าจะเป็นของเหตุการณ์ E
ดังนั้น   P(E) = n(E) / n(S)
หมายเหตุ       ข้อกำหนดนี้ ใช้คำนวณความน่าจะเป็นของเหตุการณ์จาดแซมเปิลสเปซที่เป็นเซตจำกัด และสมาชิกแต่ละตัว มีโอกาสเกิดขึ้นได้เท่าๆกัน
ในอีกทางหนึ่ง ความน่าจะเป็นของเหตุการณ์ คือ จำนวนที่บิกให้ทราบว่าตุการณ์ที่เราสนใจมีดอกาสเกิดขึ้นมากน้อยเพียงใด กล่าวคือ
ถ้า      P(E) = 0         เหตุการณ์ E จะไม่มีโอกาสเกิดขึ้นเลย
          P(E) = 1          เหตุการณ์ E มีโอกาสเกิดขึ้นแน่นอน
          P(E) = 0.5       เหตุการณ์ E จะมีโอกาสเกิดขึ้นหรือไม่เกิดขึ้นได้เท่าๆ กัน
          P(E1) = 0.4  และ P(E2) = 0.8    เหตุการณ์ E2 มีโอกาสเกิดขึ้นมากกว่าเหตุการณ์ E1
นั่นแสดงว่า P(E) มีค่าตั้งแต่ 0-1
 
ตัวอย่างที่ 1 ในการหยิบไพ่มา 1 ใบ จากไพ่ 1 สำรับ ซึ่งมี 52 ใบ จงหาความน่าจะเป็นของเหตุการณ์ที่ไพ่ใบนั้นเป็นโพดำ
วิธีทำ   สมมติให้ E แทน เหตุการณ์ที่ได้ไพ่ใบนั้นเป็นโพดำ
          และ S แทน แซมเปิลสเปซ
          จะได้ n(E) = 13
          และ n(S) = 52
          จากสูตร         P(E) = n(E) / n(S)
          จะได้             P(E) = 13 / 52  
ดังนั้น ความน่าจะเป็นของเหตุการณ์ที่ได้ไพ่ใบนั้นเป็นโพดำเท่ากับ 13/52
 
ตัวอย่างที่ 2 ครอบครัวหนึ่งมีลูกสองคน จงหาความน่าจะเป็นของครอบครัวนั้น ถ้า
1. ลูกคนแรกเป็นหญิง และลูกคนที่สองเป็นชาย
2. ไม่มีลูกชายเลย
3. มีลูกชายมากกว่า 1 คน
4. มีลูกสาวอย่างน้อย 1 คน
5. มีลูกชาย 1 คน และลูกสาว 1 คน
6. มีลูกชาย 3 คน
วิธีทำ  
สมมติให้         E1 แทน เหตุการณ์ที่มีลูกคนแรกเป็นหญิง และลูกคนที่สองเป็นชาย
E2 แทน เหตุการณ์ที่ไม่มีลูกชายเลย
E3 แทน เหตุการณ์ที่มีลูกชายมากกว่า 1 คน
E4 แทน เหตุการณ์ที่มีลูกสาวอย่างน้อย 1 คน
E5 แทน เหตุการณ์ที่มีลูกชาย 1 คน และลูกสาว 1 คน
E6 แทน เหตุการณ์ที่มีลูกชาย 3 คน
และ              S แทน แซมเปิลสเปซ
จากโจทย์ จะได้ S = { (M, M), (M, W), (W, W), (W, M) }
แสดงว่า n(S) = 4
           1. E1 = { (W, M) } 
จะได้ n(E1) = 1
ดังนั้น P(E1) = 1/4
          2. E2 = { (W, W) } 
จะได้ n(E2) = 1
ดังนั้น P(E2) = 1/4
          3. E3 = { (M, M) } 
จะได้ n(E3) = 1
ดังนั้น P(E3) = 1/4
          4. E4 = { (M, W), (W, M), (W, W) } 
จะได้ n(E4) = 3
ดังนั้น P(E4) = 3/4
          5. E5 = { (M, W), (W, M) } 
จะได้ n(E5) = 2
ดังนั้น P(E5) = 2/4
         6. E6 ไม่มี แสดงว่า ไม่มีโอกาสเกิดเหตุการณ์แบบนี้ขึ้นเลย
จะได้ n(E6) = 0
ดังนั้น P(E6) = 0
การใช้วิธีเรียงสับเปลี่ยนและการจัดหมู่ในการหาความน่าจะเป็น
ตัวอย่างที่ 3 ถ้าหยิบลูกหิน 3 ลูกจากกล่องที่มีลุกหินสีน้ำเงิน 4 ลูก และสีแดง 7 ลูก จงหาความน่าจะเป็นที่หยิบได้ลูกหินสีน้ำเงิน 3 ลูก
วิธีทำ  
1. การหยิบลูกหิน 3 ลุก จากหินทั้งหมด 11 ลูก จะสามารถทำได้ C(11, 3) = 165 วิธี
แสดงว่า n(S) = 165
2. การหยิบลูกหิน 3 ลูก แล้วหยิบได้ลูกหินสีน้ำเงิน 3 ลูก สามารถทำได้ C(4, 3) = 4 วิธี
แสดงว่า n(E) = 4
จากสูตร จะได้ P(E) = 4 / 165
 ดังนั้น ความน่าจะเป็นที่หยิบได้ลูกหินสีน้ำเงิน 3 ลูก เท่ากับ 4/165
 
ตัวอย่างที่ 4 มีตัวเลขอยู่ 8 จำนวน เป็นเลขคู่บวก 3 จำนวน จำนวนคี่บวก 3 จำนวน จำนวนคี่ลบ 1 จำนวน จำนวนคู่ลบอีก 1 จำนวน ถ้าสุ่มตัวเลขจำนวนดังกล่าวมา 4 จำนวน จงหาความน่าจะเป็นที่ผลคูณของเลขทั้งสี่จำนวนมีค่าน้อยกว่า 0 และเป็นเลขคี่
วิธีทำ
1. ทำการสุ่มตัวเลข 4 จำนวน จากเลขทั้งหมด 8 จำนวน จะสามารถทำได้ C(8, 4) = 70 วิธี
แสดงว่า n(S) = 70
2. การที่จะให้ได้ผลคูณของตัวเลขทั้งสี่จำนวนนั้นเป็นเลขที่มีค่าน้อยกว่า 0 และเป็นเลขคี่ จะต้องเลือกเลขบวก ซึ่งเป็นจำนวนคี่ 3 จำนวน และเลขลบซึ่งเป็นจำนวนคี่ 1 จำนวน สามารถทำได้ C(3, 3) . C(1, 1) = 1 . 1 = 1 วิธี
แสดงว่า n(E) = 1
จากสูตร จะได้ P(E) = 1/ 70
ดังนั้น ความน่าจะเป็นที่ผลคูณของเลขทั้งสี่จำนวนมีค่าน้อยกว่า 0 และเป็นเลขคี่ เท่ากับ 1/70
ตัวอย่างที่ 5 เรือนรับรองหลังหนึ่งมี 3 ห้องนอน ห้องหนึ่งพักได้ 3 คน ส่วนอีก 2 ห้อง พักได้ห้องละ 2 คน ถ้ามีแขก 7 คน เป็นหญิง 3 คน ชาย 4 คน จะเดินทางมาพักโดยไม่ระบุเพศให้ทราบล่วงหน้า จงหาความน่าจะเป็นที่จะจัดให้หญิงทั้ง 3 คน พักห้องเดียวกัน
วิธีทำ 
1. การจัดคน 7 คน เข้าห้องพัก สามารถทำได้ 7! / 3! . 2! . 2! = 210 วิธี
แสดงว่า n(S) = 210
2. การจัดให้หญิง 3 คน ได้พักห้องเดียวกัน มีขั้นตอนดังนี้
          ขั้นที่ 1 เลือกห้องนอนที่หญิง 3 คน พักด้วยกัน สามารถทำได้ C(1, 1) = 1 วิธี
          ขั้นที่ 2 การจัดผู้ชาย 4 คน เข้าห้องนอนที่เหลือ 2 ห้อง สามารถทำได้ C(4, 2) = 6 วิธี
แสดงว่า n(E) = 1 . 6 = 6
จากสูตร จะได้ P(E) = 6 / 210
ดังนั้น  ความน่าจะเป็นที่จะจัดให้หญิง 3 คน ได้พักห้องเดียวกันเท่ากับ 1/35
ตัวอย่างที่ 6 เอกับบี สลับกันโยนลูกเต๋าครั้งละสองลูก ใครโยนได้ผลรวมของแต้มบนหน้าลูกเต๋าทั้งสองเท่ากับ 7 ก่อน จะเป็นผู้ชนะ ถ้าเอเป็นคนเริ่มโดยนก่อน จงหาความน่าจะเป็นที่เอจะเป็นผู้ชนะ
วิธีทำ สมมติให้ 
           E แทน เหตุการณ์ที่ผลรวมของแต้มบนหน้าลูกเต๋าทั้งสองเท่ากับ 7
           E’ แทน เหตุการณ์ที่ผลรวมของแต้มบนหน้าลูกเต๋าทั้งสองไม่เท่ากับ 7
และ     S แทน แซมเปิลสเปซ
1. การโยนลูกเต๋า 2 ลูก จะเกิดขึ้นได้ 6 . 6 = 36 แบบ
แสดงว่า n(S) = 36
2. ผลรวมของแต้มบนหน้าลูกเต๋าทั้งสองเท่ากับ 7
E = { (1, 6), ( 2, 5), (3, 4), (4, 3), (5, 2), (6, 1) }
แสดงว่า n(E) = 6
จากสูตร จะได้ P(E) = 6/36  = 1/6
และ P(E’) = 1 – P(E) = 1 – (1/6) = 5/6
ดังนั้น ความน่าจะเป็นที่เอจะเป็นผู้ขนะ เท่ากับ 5/6
 
ตัวอย่างที่ 7 ในการลากจุดเชื่อมจุดยอด 2 จุด ใดๆ ของรูปสิบเหลี่ยมด้านเท่าที่แนบในวงกลม โดยที่เส้นนั้นๆ ไม่ใช่ด้านของรูปสิบเหลี่ยมดังกล่าว จงหาความน่าจะเป็นที่เส้นเชื่อมนั้นไม่ใช่เส้นรอบรุป และไม่ผ่านจุดศูนย์กลางของวงกลม
วิธีทำ  สมมติให้ 
         E แทน เหตุการณ์ที่เส้นลากเชื่อมจุดยอด 2 จุดใดๆ ที่ผ่านจุดศูนย์กลางของวงกลม
         E’ แทน เหตุการณ์ที่เส้นลากเชื่อมจุดยอด 2 จุดใดๆ ไม่ใช่เส้นรอบรูป และไม่ผ่านจุดศูนย์กลางของวงกลม
และ   S แทน แซมเปิลสเปซ (เส้นทแยงมุมทั้งหมด)
1. จำนวนเส้นทแยงมุมของรูปสิบเหลี่ยมด้านเท่า เท่ากับ C(10, 2) – 10 = 35 เส้น
แสดงว่า n(S) = 35
2. จำนวนเส้นลากเชื่อมจุด 2 จุดใดๆ ที่ผ่านศูนย์กลางของวงกลมเท่ากับ 5 เส้น
แสดงว่า    n(E) = 5
              P(E) = 5/35 = 1/7
              P(E’) = 1 – P(E) = 6/7
ดังนั้น ความน่าจะเป็นที่เส้นเชื่อมนั้นไม่ใช่เส้นรอบรูป และไม่ผ่านจุดศูนย์กลางของวงกลมเท่ากับ 6/7
ความน่าจะเป็น
        ในชีวิตประจำวันเราอยู่กับเหตุการณ์ต่าง ๆ และมีคำถามอยู่ในใจตลอดเวลา เช่น 
พรุ่งนี้ฝนจะตกหรือไม่ 
บางทีเราต้องไปทำงานวันนี้ 
นายกอาจลาออกและยุปสภาเร็ว ๆ นี้ 
ทีมฟุตบอลทีมใดจะได้เป็นแชมป์โลก 
ใครชนะเลือกตั้งในสมัยหน้า 
        คำว่า "ความน่าจะเป็น" หรือ "probability" เป็นวิธีการวัดความไม่แน่นอนในรูปแบบคณิตศาสตร์ เช่น เมื่อโยนเหรียญ ความน่าจะเป็นของเหรียญที่จะออกหัวหรือก้อยเท่ากับ 0.5 
        ดังนั้นเหตุการณ์ต่าง ๆ ที่เกิดขึ้นในอาณาคตเป็นสิ่งที่ยากจะคาดเดาได้ถูกต้องร้อยเปอร์เซนต์ นักอุตุนิยมวิทยาจึงใช้หลักการของความน่าจะเป็นเข้ามาทำนาย เช่น ความน่าจะเป็นของการเกิดฝนตกใน กรุงเทพมหานคร ในวันพรุ่งนี้มีค่าเท่ากับ 0.7 
        ความน่าจะเป็น เป็นค่าที่อาจมีความหมายที่หลายคนเข้าใจได้ไม่ยาก ความน่าจะเป็น เป็นศาสตร์ที่มีความละเอียดอ่อนที่จะนำไปประยุกต์ใช้ โดยเฉพาะเหตุการณ์ในชีวิตประจำวันต่าง ๆ ความน่าจะเป็นมีการกำหนดค่าเป็นเศษส่วนหรือเป็นเปอร์เซนต์หรือให้มีค่า ระหว่าง 0 ถึง 1 เช่น ถ้านำลูกเต๋า ทอยลงบนพื้น โอกาสที่จะปรากฎหน้า 1 มีค่าเท่ากับ 1/6 หรือ 16.6 เปอร์เซนต์ ถ้าโยนเหรียญหนึ่งเหรียญ และให้ตกบนพื้น (โยนแบบยุติธรรม) โอกาสที่จะปรากฏหัวเท่ากับ 1/2 หรือ 0.5 
เราจะวัดหาค่าความน่าจะเป็นได้อย่างไร? 
        เราสามารถวัดหาค่าความน่าจะเป็นได้สองวิธี (บางทีเป็น 3 วิธี) ขึ้นกับสภาวะแวดล้อม 
เมื่อเหตุการณ์ปรากฏมีลักษณะเหมือน ๆ กัน 
        สมมุติว่าเราทอยเหรียญจะมีโอกาสที่เป็นไปได้สองแบบคือ หัว หรือก้อย ถ้าเหรียญเป็นเหรีญญปกติ การทอยทอยอย่างยุติธรรม ผลที่เกิดหัวหรือก้อยมีลักษณะเท่าเทียมกัน 
 
        ทำนองเดียวกันที่เราทอยลูกเต๋า โอกาสที่ลูกเต๋าจะปรากฎหน้า 1, 2, 3, 4, 5 และ 6 มีได้เท่ากัน ดังนั้นความน่าจะเป็นของการทอยลูกเต๋าให้ปรากฎหน้าที่เป็นเลขคู่ 
 
        ประชากรคนไทยยังนิยมการเสี่ยงโชค รัฐบาลได้ออกฉลากกินแบ่งหรือที่รู้จักกันในนามลอตเตอรี่ หรือ หวยรัฐบาล ตัวเลขของฉลากกินแบ่ง มี 6 ตัวเลข ซึ่งก็มีจำนวนฉลากทั้งสิ้น 1 ล้าน ฉบับ มีรางวัลที่หนึ่งมี 1 รางวัล รางวัลที่สอง มี 5 รางวัล รางวัลที่สามมี 10 รางวัล รางวัลที่สี่มี 50 รางวัล รางวัลที่ห้ามี 100 รางวัล 
 
        โอกาสที่จะถูกรางวัลที่หนึ่ง คือ 
 
        โอกาสที่จะถูกรางวัลที่ 1 ถึง 5 มี 
 
        ดังนั้นถ้าเหตุการณ์ที่ปรากฎแต่ละครั้งมีโอกาสเท่าเทียมกับสิ่งที่เป็นความน่าจะเป็นคือ 
 
        ลักษณะที่กล่าวมานี้เห็นว่าโอกาสหรือสิ่งที่เป็นเหตุการณ์ แต่ละครั้งที่ปรากฎ จะมีโอกาสความน่าจะเป็นเท่ากัน ลักษณะจึงเหมือนการทอยเหรียญ ลูกเต๋า หรือการซื้อลอตเตอรี่ ทุกครั้งที่มีเหตุการณ์เกิดขึ้นขึงมีความน่าจะเป็นที่ชัดเจน 
เมื่อเหตุการณ์ปรากฏมีลักษณะเหมือน ๆ กัน 
        สมมุติว่าเราทอยเหรียญจะมีโอกาสที่เป็นไปได้สองแบบคือ หัว หรือก้อย ถ้าเหรียญเป็นเหรีญญปกติ การทอยทอยอย่างยุติธรรม ผลที่เกิดหัวหรือก้อยมีลักษณะเท่าเทียมกัน 
 
        ทำนองเดียวกันที่เราทอยลูกเต๋า โอกาสที่ลูกเต๋าจะปรากฎหน้า 1, 2, 3, 4, 5 และ 6 มีได้เท่ากัน ดังนั้น ความน่าจะเป็นของการทอยลูกเต๋าให้ปรากฎหน้าที่เป็นเลขคู่ 
 
        ประชากรคนไทยยังนิยมการเสี่ยงโชค รัฐบาลได้ออกฉลากกินแบ่งหรือที่รู้จักกันในนามลอตเตอรี่ หรือ หวยรัฐบาล ตัวเลขของฉลากกินแบ่ง มี 6 ตัวเลข ซึ่งก็มีจำนวนฉลากทั้งสิ้น 1 ล้าน ฉบับ มีรางวัลที่หนึ่งมี 1 รางวัล รางวัลที่สอง มี 5 รางวัล รางวัลที่สามมี 10 รางวัล รางวัลที่สี่มี 50 รางวัล รางวัลที่ห้ามี 100 รางวัล 
        โอกาสที่จะถูกรางวัลที่หนึ่ง คือ 
 
        โอกาสที่จะถูกรางวัลที่ 1 ถึง 5 มี 
 
        ดังนั้นถ้าเหตุการณ์ที่ปรากฎแต่ละครั้งมีโอกาสเท่าเทียมกับสิ่งที่เป็นความน่าจะเป็นคือ 
 
        ลักษณะที่กล่าวมานี้เห็นว่าโอกาสหรือสิ่งที่เป็นเหตุการณ์ แต่ละครั้งที่ปรากฎ จะมีโอกาสความน่าจะเป็นเท่ากัน ลักษณะจึงเหมือนการทอยเหรียญ ลูกเต๋า หรือการซื้อลอตเตอรี่ ทุกครั้งที่มีเหตุการณ์เกิดขึ้นขึงมีความน่าจะเป็นที่ชัดเจน 
 

ชื่อผู้ทำโครงงาน

ด.ช.เกียรติยศ  พิบูลย์ ม.2/13 เลขที่3

ด.ญ.กุลพิชฌา  บำรุงภักดิ์ ม.2/13 เลขที่14

ด.ญ.ณัฐชยา  อารีย์วงศ์ ม.2/13 เลขที่17  

 ช่วยด้วยครับ
นักเรียนที่สร้างบล็อก กรุณาอย่า
คัดลอกข้อมูลจากเว็บอื่นทั้งหมด
ควรนำมาจากหลายๆ เว็บ แล้ววิเคราะห์ สังเคราะห์ และเขียนขึ้นใหม่
หากคัดลอกทั้งหมด จะถูกดำเนินคดี
ตามกฎหมายจากเจ้าของลิขสิทธิ์
มีโทษทั้งจำคุกและปรับในอัตราสูง

ช่วยกันนะครับ 
ไทยกู๊ดวิวจะได้อยู่นานๆ 
ไม่ถูกปิดเสียก่อน

ขอขอบคุณในความร่วมมือครับ

อ่านรายละเอียด

สมาชิกที่ออนไลน์

ขณะนี้มี สมาชิก 0 คน และ ผู้เยี่ยมชม 20 คน กำลังออนไลน์