ฟังก์ชัน

 ฟังก์ชัน

 

ความหมายของฟังก์ชัน

 

 ฟังก์ชัน คือ ความสัมพันธ์ซึ่งในสองคู่อันดับใดๆ ของความสัมพันธ์นั้น ถ้าสมาชิกตัวหน้าเหมือนกันแล้ว สมาชิกตัวหลังต้องไม่ต่างกัน 

นั่นคือ       ถ้า (x1,y1) ∈ r และ (x1,y2) ∈ r แล้ว y1= y2 
 

หลักในการพิจารณาว่าความสัมพันธ์เป็นฟังก์ชันหรือไม่

1. ถ้าความสัมพันธ์นั้นอยู่ในรูปแจกแจงสมาชิก ให้ดูว่าสมาชิกตัวหน้าของคู่อันดับซ้ำกันหรือไม่ ถ้าสมาชิกตัวหน้าของคู่อันดับซ้ำกัน แสดงว่าความสัมพันธ์นั้นไม่เป็นฟังก์ชัน 

2. ถ้าความสัมพันธ์นั้นอยู่ในรูปของการกำหนดเงื่อนไขสมาชิก
r = {(x,y) ∈ A× B | P(x,y) } ให้แทนค่าแต่ละสมาชิกของ x ลงในเงื่อนไข P(x,y) เพื่อหาค่า y ถ้ามี x ตัวใดที่ให้ค่า y มากกว่า 1 ค่า แสดงว่าความสัมพันธ์นั้นไม่เป็นฟังก์ชัน 

3. พิจารณาจากกราฟของความสัมพันธ์ โดยการลากเส้นตรงขนานกับแกน y ถ้าเส้นตรงดังกล่าวตัดกราฟของความสัมพันธ์มากกว่า 1 จุด แสดงว่าความสัมพันธ์นั้นไม่เป็นฟังก์ชัน 

 


 ฟังก์ชันจาก A ไป B

• ฟังก์ชันจาก A ไป B 
f เป็นฟังก์ชันจาก A ไป B ก็ต่อเมื่อ f เป็นฟังก์ชันที่มีโดเมนคือเซต A และเรนจ์เป็นสับเซตของเซต B เขียนแทนด้วย f : A → B 
 

• ฟังก์ชันจาก A ไปทั่วถึง B
         f เป็นฟังก์ชันจาก A ไปทั่วถึง B ก็ต่อเมื่อ f เป็นฟังก์ชันที่มีโดเมนเป็นเซต A และเรนจ์เป็นของเซต B

• ฟังก์ชันหนึ่งต่อหนึ่งจาก A ไป B 
f เป็นฟังก์ชันหนึ่งต่อหนึ่งจาก A ไป B ก็ต่อเมื่อ f เป็นฟังก์ชันจาก A ไป B ซึ่งถ้า y ∈ R f
แล้วมี x ∈ Df เพียงตัวเดียวเท่านั้นที่ทำให้ (x,y) ∈ f

หรืออาจกล่าวอย่างง่ายๆได้ว่า f เป็นฟังก์ชันหนึ่งต่อหนึ่ง ก็ต่อเมื่อสำหรับ x1และ x2 ในโดเมน ถ้า
f( x1) = f( x2) แล้ว x1 = x2
 

• ฟังก์ชันเพิ่ม ฟังก์ชันลด 
ให้ f เป็นฟังก์ชันจากสับเซตของ R× R และ A ⊂ Df

 ♦ f เป็นฟังก์ชันเพิ่มใน A ก็ต่อเมื่อ สำหรับสมาชิก x1 และ x2 ใดๆ ใน A 
ถ้า x1 < x2 แล้ว f( x1) < f( x2)

  ♦ f เป็นฟังก์ชันลดใน A ก็ต่อเมื่อ สำหรับสมาชิก x1 และ x2 ใดๆ ใน A 
  ถ้า x1 < x2 แล้ว f( x1) > f( x2)

 ฟังก์ชันที่ควรรู้จัก

• ฟังก์ชันเชิงเส้น (linear function)

กราฟของฟังก์ชันเชิงเส้นจะมีลักษณะเป็นเส้นตรง

• ฟังก์ชันขั้นบันได (step function)

กราฟของฟังก์ชันนี้จะมีรูปร่างคล้ายขั้นบันได


• ฟังก์ชันกำลังสอง (quadratic function)

กราฟของฟังก์ชันกำลังสองจะมีลักษณะเป็นรูปพาราโบลา

• ฟังก์ชันพหุนาม (polynomial function) 

 • ฟังก์ชันตรรกยะ (rational function)

• ฟังก์ชันที่เป็นคาบ (periodic function)

ฟังก์ชั่นอินเวอส์

 เนื่องจากฟังก์ชัน คือ รูปแบบหนึ่งของความสัมพันธ์ ดังนั้น การหาอินเวอร์สของฟังก์ชันจึงหาได้ เช่นเดียวกับการหาอินเวอร์สของความสัมพันธ์ เพียงแต่อินเวอร์สของฟังก์ชันไม่จำเป็นต้องเป็นฟังก์ชันเสมอไป

ตัวอย่างเช่น กำหนด f = {(1,2) ,(2,3) ,(3,4)} 
∴ f-1 = {(2,1) ,(3,2) ,(4,3)} เป็นฟังก์ชัน 
กำหนด g= {(1,2) ,(2,3) ,(4,2)} 
∴ g-1 = {(2,1) ,(3,2) ,(2,4)} ไม่ เป็นฟังก์ชัน
เรียกอินเวอร์สของฟังก์ชันที่เป็นฟังก์ชันว่า "ฟังก์ชันอินเวอร์ส" จากตัวอย่างข้างต้นจะเห็นว่า ฟังก์ชันที่จะมีฟังก์ชันอินเวอร์สได้ จะต้องเป็นฟังก์ชันหนึ่งต่อหนึ่ง  

   สมบัติของฟังก์ชันอินเวอร์ส
กำหนดให้ f เป็นฟังก์ชัน 
1. f - 1 เป็นฟังก์ชัน เมื่อ f เป็นฟังก์ชัน 1-1 
2. Df = R f - 1 และ Rf = Df - 1 

ฟังก์ชั่นคอมโพสิท

 ให้ f และ g เป็นฟังก์ชัน และ R f ∩ Dg≠ Ø ฟังก์ชันคอมโพสิทของ f และ g เขียนแทนด้วย gof กำหนดโดย (gof)(x) = g(f(x)) สำหรับทุก x ซึ่ง f(x) ∈ Dg

 

 

   


# เซต                                             # เลขยกกำลัง                                      # จำนวนจริง
# ความสัมพันธ์                                   # ฟังก์ชัน                                           # ตรรกศาสตร์
# ลำดับ                                           # อนุกรม                                        # ความน่าจะเป็น
# สถิติ                                       # สมการและอสมการ                                  # แหล่งอ้างอิง
# ผู้จัดทำ                                               # แบบทดสอบ

สร้างโดย: 
น.ส. สุชานาถ อานนท์

มหาวิทยาลัยศรีปทุม ผู้ใหญ่ใจดี
 
 

 ช่วยด้วยครับ
นักเรียนที่สร้างบล็อก กรุณาอย่า
คัดลอกข้อมูลจากเว็บอื่นทั้งหมด
ควรนำมาจากหลายๆ เว็บ แล้ววิเคราะห์ สังเคราะห์ และเขียนขึ้นใหม่
หากคัดลอกทั้งหมด จะถูกดำเนินคดี
ตามกฎหมายจากเจ้าของลิขสิทธิ์
มีโทษทั้งจำคุกและปรับในอัตราสูง

ช่วยกันนะครับ 
ไทยกู๊ดวิวจะได้อยู่นานๆ 
ไม่ถูกปิดเสียก่อน

ขอขอบคุณในความร่วมมือครับ

อ่านรายละเอียด

ด่วน...... ขณะนี้
พระราชบัญญัติลิขสิทธิ์ (ฉบับที่ 2) พ.ศ. 2558 
มีผลบังคับใช้แล้ว 
ขอให้นักเรียนและคุณครูที่ใช้งาน
เว็บ thaigoodview ในการส่งการบ้าน
ระมัดระวังการละเมิดลิขสิทธิ์ด้วย
อ่านรายละเอียดที่นี่ครับ

 

สมาชิกที่ออนไลน์

ขณะนี้มี สมาชิก 0 คน และ ผู้เยี่ยมชม 347 คน กำลังออนไลน์