เซต (sets) หน้า2

เซต (sets)

 

ความสัมพันธ์ของเซต 

1. เซตที่เท่ากัน (Equal Sets)  คือ เซตสองเซตจะเท่ากันก็ต่อเมื่อเซตทั้งสองมีสมาชิกเหมือนกัน
สัญลักษณ์ เซต A เท่ากับ เซต B แทนด้วย A = B
เซต A ไม่เท่ากับ เซต B แทนด้วย A ≠ B 

 

A = {1, 2, 3, 4, 5}
B = {1, 2, 3, 4, 3, 2, 5, 5, 5}
เซต A มีสมาชิกเหมือนกับเซต B A = B
C = {a, e, i, o, u}
D = {i, o, u, e, o}
เซต C มีสมาชิกเหมือนกับเซต D C = D
E = {0, 1, 3, 5}
F = {x | x ≠ I+, x < 6}
เซต E มีสมาชิก 4 ตัว คือ 0, 1, 3, 5 แต่เซต F มีสมาชิก 5 ตัว คือ 1, 2, 3, 4, 5 E ≠ F
G = {สีแดง, สีน้ำเงิน, สีขาว}
H = {สีแดง, สีน้ำเงิน, สีเหลือง}
สีขาว ≠ G แต่ สีขาว ≠ H G ≠ H

 

2. เซตที่เทียบเท่ากัน (Equivalentl Sets)  คือ เซตที่มีจำนวนสมาชิกเท่ากัน และสมาชิกของเซตจับคู่กันได้พอดีแบบหนึ่งต่อหนึ่ง
สัญลักษณ์ เซต A เทียบเท่ากับ เซต B แทนด้วย A ↔ B 

หมายเหตุ  1. ถ้า A = B แล้ว A ↔ B
2. ถ้า A ↔ B แล้ว ไม่อาจสรุปได้ว่า A = B 

สับเซต

การที่เซต A จะเป็นสับเซตของเซต B ได้นั้นสมาชิกทุกตัวของเซต A จะต้องเป็นสมาชิกของเซต B
สัญลักษณ์ เซต A เป็นสับเซตของเซต B แทนด้วย A c B
เซต A ไม่เป็นสับเซตของเซต B แทนด้วย A ¢ B 


ตัวอย่าง

 

A = {1, 2}     B = {2, 3}
C = {1, 2, 3}     D = {1, 2, 3, 4}
A ¢ B, A c C, A c D
B ¢ A, B c C, B c D
C ¢ A, C ¢ B, C c D
D¢  A, D ¢ B, D ¢ C

หมายเหตุ  1. เซตทุกเซตเป็นสับเซตของตัวมันเอง (A c A)
2. เซตว่าง เป็นสับเซตของทุก ๆ เซต (Φ c A)
3. ถ้า A c Φ  แล้ว A =
4. ถ้า A c B และ B c C แล้ว A c C
5. A = B ก็ต่อเมื่อ A c B และ B c A
 เพาเวอร์เซต
ถ้า A เป็นเซตใด ๆ เพาเวอร์ของเซต A คือ เซตที่มีสมาชิกเป็นสับเซตทั้งหมดของ A เขียนแทนด้วย P(A)
ตัวอย่าง

 

เซต A P(A)
     Φ  {Φ}
{a} {Φ, {a}}
{a, b} {Φ, {a}, {b}, {a, b}}
{a, b, c} {Φ, {a}, {b}, {c}, {a, b}, {a, c}, {b, c}, {a, b, c}}

 

 เอกภพสัมพัทธ์
เอกภพสัมพัทธ์ คือ เซตที่ถูกกำหนดขึ้นโดยมีข้อตกลงว่า จะกล่าวถึงสิ่งที่เป็นสมาชิกของเซตนี้เท่านั้น จะไม่กล่าวถึงสิ่งอื่นใดที่ไม่เป็นสมาชิกของเซตนี้ โดยทั่วไปจะใช้สัญลักษณ์ υ แทนเซตที่เป็นเอกภพสัมพัทธ์
ตัวอย่าง

 A เป็นเซตของจำนวนนับที่มีค่าน้อยกว่า 5

สมาชิกในเซต A ต้องเลือกมาจากเซตของจำนวนนับเท่านั้น ซึ่งได้แก่ 1, 2, 3, 4 ดังนั้น เซตของจำนวนนับทั้งหมดเป็นเอกภพสัมพัทธ์ หรือ
υ คือเซตของจำนวนนับ
B เป็นเซตของจำนวนเต็มที่เป็นคำตอบ
ของสมการ (2x - 1)(x + 4) = 0
สมาชิกของ B ต้องเลือกมาจากเซตจำนวนเต็มเท่านั้น ซึ่งได้แก่ -4 ดังนั้น
เซตของจำนวนเต็มทั้งหมดจึงเป็นเอกภพสัมพัทธ์ หรือ
υ  คือเซตของจำนวนเต็ม

 

หมายเหตุ ในเรื่องที่เกี่ยวข้องกับระบบจำนวน ถ้าไม่ระบุแน่ชัดว่าเชตใดเป็นเอกภพสัมพัทธ์ ให้หมายถึงเซตของจำนวนจริงเป็นเอกภพสัมพัทธ์เสมอ
 ปฏิบัติการระหว่างเซต
ปฏิบัติการระหว่างเซต คือ การนำเซตต่าง ๆ มากระทำกันเพื่อให้เกิดเป็นเซตใหม่ได้ ซึ่งทำได้ 4 วิธี คือ
1. ยูเนียน (Union) ยูเนียนของเซต A และ B คือเซตที่ประกอบด้วยสมาชิกของเซต A หรือ B
เขียนแทนด้วย A υ B 
2.  อินเตอร์เซคชัน (Intersection) อินเตอร์เซคชันของเซต A และ B คือเซตที่ประกอบด้วยสมาชิกของเซต A และ B
เขียนแทนด้วย A ∩ B 
3. คอมพลีเมนต์ (Complement) คอมพลีเมนต์ของเซต A คือเซตที่ประกอบด้วยสมาชิกที่เป็นสมาชิกของเอกภพสัมพัทธ์ แต่ไม่เป็นสมาชิกของ A
เขียนแทนด้วย A' 
4.  ผลต่างของเซต (Difference) ผลต่างของเซต A และ B คือเซตที่ประกอบด้วยสมาชิกที่เป็นสมาชิกของเซต A แต่ไม่เป็นสมาชิกของเซต B
เขียนแทนด้วย A - B
สัญลักษณ์ที่เกี่ยวข้องกับจำนวนต่างๆที่ควรทราบ

 

สัญลักษณ์ ความหมาย
N เซตของจำนวนนับ
I+ เซตของจำนวนเต็มบวก (จำนวนนับ)
I- เซตของจำนวนเต็มลบ
I เซตของจำนวนเต็ม
Q เซตของจำนวนตรรกยะ
Q' เซตของจำนวนอตรรกยะ
R+ เซตของจำนวนจริงบวก
R- เซตของจำนวนจริงลบ
R

เซตของจำนวนจริง

     

# เซต                                             # เลขยกกำลัง                                      # จำนวนจริง
# ความสัมพันธ์                                   # ฟังก์ชัน                                           # ตรรกศาสตร์
# ลำดับ                                           # อนุกรม                                        # ความน่าจะเป็น
# สถิติ                                       # สมการและอสมการ                                  # แหล่งอ้างอิง
# ผู้จัดทำ                                               # แบบทดสอบ
สร้างโดย: 
คุณครู ศรนรินทร์ สังวาลย์ และ น.ส. สุชานาถ อานนท์

มหาวิทยาลัยศรีปทุม ผู้ใหญ่ใจดี
 
 

 ช่วยด้วยครับ
นักเรียนที่สร้างบล็อก กรุณาอย่า
คัดลอกข้อมูลจากเว็บอื่นทั้งหมด
ควรนำมาจากหลายๆ เว็บ แล้ววิเคราะห์ สังเคราะห์ และเขียนขึ้นใหม่
หากคัดลอกทั้งหมด จะถูกดำเนินคดี
ตามกฎหมายจากเจ้าของลิขสิทธิ์
มีโทษทั้งจำคุกและปรับในอัตราสูง

ช่วยกันนะครับ 
ไทยกู๊ดวิวจะได้อยู่นานๆ 
ไม่ถูกปิดเสียก่อน

ขอขอบคุณในความร่วมมือครับ

อ่านรายละเอียด

ด่วน...... ขณะนี้
พระราชบัญญัติลิขสิทธิ์ (ฉบับที่ 2) พ.ศ. 2558 
มีผลบังคับใช้แล้ว 
ขอให้นักเรียนและคุณครูที่ใช้งาน
เว็บ thaigoodview ในการส่งการบ้าน
ระมัดระวังการละเมิดลิขสิทธิ์ด้วย
อ่านรายละเอียดที่นี่ครับ

 

สมาชิกที่ออนไลน์

ขณะนี้มี สมาชิก 0 คน และ ผู้เยี่ยมชม 78 คน กำลังออนไลน์