| กำหนดให้ z, z1 และ z2 เป็นจำนวนเชิงซ้อน |
|
| |
|
|
| |
โดยที่ |
z |
= |
a + bi |
| |
แล้ว |
-z |
= |
-a - bi |
|
|
 |
|
| |
จากหลักการข้างต้น |
| |
ถ้ากำหนดให้ |
z1 |
= |
a + bi |
| |
|
z2 |
= |
c + di |
| |
จะได้ |
-z2 |
= |
-c - di |
| |
จาก |
z1 - z2 |
= |
z1 + (-z2) |
| |
จะได้ |
z1 - z2 |
= |
(a + bi) + (-c - di) |
| |
|
|
= |
[a + (-c)] + [b + (-d)]i |
| |
ดังนั้น |
z1 - z2 |
= |
(a - c) + (b - d)i |
| |
จงหาค่าของ (5 + 4i) - (3 + i) |
|
| |
|
(5 + 4i) - (3 + i) |
= |
(5 - 3) + (4 - 1)i |
|
|
| |
|
|
= |
2 + 3i |
|
|
|

|
| |
จงหาค่าของ (7 + 2i) - (4 - 2i) |
|
| |
|
(7 + 2i) - (4 - 2i) |
= |
[7 - 4] + [2 - (-2)]i |
|
|
| |
|
|
= |
3 + 4i |
|
|
|

|
| |
กำหนดให้ z1 = -5 + 3i และ z2 = -6 - 2i จงหา z1 - z2 |
|
| |
จาก |
z1 |
= |
-5 + 3i |
|
|
| |
|
z2 |
= |
-6 - 2i |
|
|
| |
จะได้ |
z1 - z2 |
= |
[-5 - (-6)] + [3 - (-2)]i |
|
|
| |
|
|
= |
i + 5i |
|
|
|

|
|